



# КЛАПАН ЗАПОРНЫЙ ФЛАНЦЕВЫЙ С ЭЛЕКТРИЧЕСКИМ ИСПОЛНИТЕЛЬНЫМ МЕХАНИЗМОМ

КЗ 40.050-00.00.000 РЭ Руководство по эксплуатации



# Содержание

| 1 | Описание и работа                          | 3  |
|---|--------------------------------------------|----|
|   | 1.1 Назначение                             | 3  |
|   | 1.2 Состав                                 | 5  |
|   | 1.3 Устройство и работа                    | 5  |
|   | 1.4 Основные технические характеристики    | 5  |
|   | 1.5 Габаритные и присоединительные размеры | 6  |
|   | 1.6 Показатели надежности                  | 6  |
|   | 1.7 Маркировка и пломбирование             | 7  |
|   | 1.8 Консервация                            | 7  |
|   | 1.9 Упаковка                               | 8  |
| 2 | Использование по назначению                | 8  |
|   | 2.1 Подготовка к использованию             | 8  |
|   | 2.2 Указания по монтажу                    | 8  |
| 3 | Техническое обслуживание                   | 9  |
|   | 3.1 Общие указания                         | 9  |
|   | 3.2 Меры безопасности                      | 9  |
|   | 3.3 Неисправности и методы их устранения   | 10 |
|   | 3.4 Порядок разборки и сборки              | 10 |
|   | 3.5 Испытания                              | 12 |
| 4 | Хранение                                   | 14 |
| 5 | транспортирование                          | 14 |
| 6 | Утилизация                                 | 14 |

Производитель оставляет за собой право изменять конструкцию без изменения основных характеристик изделия.

Настоящее руководство по эксплуатации (далее РЭ) предназначается для ознакомления потребителя с устройством, функциональными свойствами, правилами монтажа, эксплуатации и хранения, соблюдение которых обеспечит полное использование технических возможностей изделия в течение срока службы.

РЭ распространяется на клапаны запорные с электрическим исполнительным механизмом (далее клапаны) на условное давление PN 1,6МПа (16кгс/см²), PN 2,5 Мпа (25 кгс/см²) и PN 4,0 Мпа (40 кгс/см²).

Клапан обозначается таблицей фигур:

15 - тип арматуры (клапан запорный);

с, лс, нж - материал корпуса (с – сталь углеродистая/ лс – сталь легированная/

9 - вид привода (электрический);

65, 18, 22 - номер модели;

п/нж - материал уплотнительных поверхностей (п – пластмассы

(фторопласт), нж – сталь коррозионно—стойкая).

Условное обозначение клапанов приведено в таблице 1.

Таблица 1

| PN 16 (1,6МПа)                     | РN 25 (2,5Мпа)                     | РN 40 (4,0Мпа)                     |
|------------------------------------|------------------------------------|------------------------------------|
| Уплотне                            | ение затвора «металл по метал      | лу» (нж)                           |
| 15с965нж<br>15лс965нж<br>15нж965нж | 15с918нж<br>15лс918нж<br>15нж918нж | 15с922нж<br>15лс922нж<br>15нж922нж |
|                                    | /плотнение затвора «мягкое» (і     | п)                                 |
| 15с965п<br>15лс965п<br>15нж965п    | 15с918п<br>15лс918п<br>15нж918п    | 15с922п<br>15лс922п<br>15нж922п    |

# 1 Описание и работа

#### 1.1 Назначение.

клапаны предназначены для установки в качестве запорных органов в системах автоматического регулирования технологических процессов.

Клапаны изготавливаются в соответствии с требованиями ТУ 3742-008-22294686-2011 и по чертежам, утвержденным в установленном порядке.

Клапаны должны комплектоваться ЭИМ общепромышленного исполнения.

Клапаны, предназначенные для взрывопожароопасных сред, должны комплектоваться ЭИМ во взрывозащищенном исполнении.

Присоединение к трубопроводу – фланцевое.

Технические требования к фланцам клапанов, конструкция и размеры, присоединительные размеры — тип 21по ГОСТ33259, размеры уплотнительных поверхностей фланцев - исполнение В ряд 1 по ГОСТ 33259 или по согласованию с Заказчиком (F, D).

Ответные фланцы для клапанов, применяемых на трубопроводах, работающих при PN не более 2,5Мпа (25 кгс/см²) и температуре среды не выше 300°С, - приварные плоские тип 01 по ГОСТ 33259, на трубопроводах, работающих при PN свыше 2,5Мпа (25кгс/см²) независимо от температуры, а также с рабочей температурой среды выше 300°С независимо от давления – приварные встык тип 11 по ГОСТ 33259.

Материал основных деталей указан в таблице 2.

# Таблица 2

| Наимонование потапой        | Материальное исполнение                          |                           |                             |  |  |  |
|-----------------------------|--------------------------------------------------|---------------------------|-----------------------------|--|--|--|
| Наименование деталей        | С                                                | лс                        | ЖН                          |  |  |  |
| Корпус, крышка              | Сталь 25Л<br>ГОСТ 977                            | Сталь 20ГЛ<br>ГОСТ 21357  | Сталь 12X18Н9ТЛ<br>ГОСТ 977 |  |  |  |
| Шток, тарелка, седло        | Сталь 20X13 ГОСТ 5632 Сталь 14X17H2<br>ГОСТ 5632 |                           |                             |  |  |  |
| Уплотнение сальниковое      | ТРГ, Фторопласт-4 ГОСТ 10007                     |                           |                             |  |  |  |
| Гайка, втулка сальника      | ЛС59-1 ГОСТ 2060                                 |                           |                             |  |  |  |
| Прокладка                   |                                                  | TPF                       | (2)                         |  |  |  |
| Уплотнение затвора «мягкое» | Ф                                                | горопласт-4 ГОСТ 10       | 0007                        |  |  |  |
| Шпилька, гайка              | Сталь 35<br>ГОСТ 1050                            | Сталь 20ХНЗА<br>ГОСТ 4543 | Сталь 14X17H2<br>ГОСТ 5632  |  |  |  |

Пробные и рабочие давления – по ГОСТ 356.

Пределы применения клапанов с уплотнением в затворе «металл по металлу» в зависимости от материала корпусных деталей и температуры рабочей среды указаны в таблицах 3 и 4.

# Таблица 3

| Условное            | Пробное   | Мате                                                     | риальное и | сполнение | корпусных | деталей – | с, лс    |  |  |  |
|---------------------|-----------|----------------------------------------------------------|------------|-----------|-----------|-----------|----------|--|--|--|
| давление<br>PN, Мпа |           | Рабочее давление Рр, Мпа (кгс/см²) при температуре среды |            |           |           |           |          |  |  |  |
| (кгс́/см²)          | (кгс/см²) | 200°C                                                    | 250°C      | 300°C     | 350°C     | 400°C     | 425°C    |  |  |  |
| 1,6 (16)            | 2,4 (24)  | 1,6 (16)                                                 | 1,4 (14)   | 1,2 (12)  | 1,1 (11)  | 0,9 (9)   | 0,8 (8)  |  |  |  |
| 2,5 (25)            | 3,8 (38)  | 2,5 (25)                                                 | 2,3 (23)   | 1,9 (19)  | 1,7 (17)  | 1,5 (15)  | 1,3 (13) |  |  |  |
| 4,0 (40)            | 6,0 (60)  | 4,0 (40)                                                 | 3,5 (35)   | 3,0 (30)  | 2,6 (26)  | 2,3 (23)  | 2,0 (20) |  |  |  |

# Таблица 4

| Условное               | Пробное                | Мат      | ериальное                                                | исполнени | е корпуснь | іх деталей | – нж     |  |  |
|------------------------|------------------------|----------|----------------------------------------------------------|-----------|------------|------------|----------|--|--|
| давление<br>PN, Мпа    | давление<br>Рпр, Мпа   | Рабочее  | Рабочее давление Рр, Мпа (кгс/см²) при температуре среды |           |            |            |          |  |  |
| (кгс/см <sup>2</sup> ) | (кгс/см <sup>2</sup> ) | 200°C    | 250°C                                                    | 300°C     | 350°C      | 400°C      | 425°C    |  |  |
| 1,6 (16)               | 2,4 (24)               | 1,6 (16) | 1,4 (14)                                                 | 1,2 (12)  | 1,1 (11)   | 0,9 (9)    | 0,8 (8)  |  |  |
| 2,5 (25)               | 3,8 (38)               | 2,5 (25) | 2,3 (23)                                                 | 1,9 (19)  | 1,7 (17)   | 1,5 (15)   | 1,3 (13) |  |  |
| 4,0 (40)               | 6,0 (60)               | 4,0 (40) | 3,5 (35)                                                 | 3,0 (30)  | 2,6 (26)   | 2,3 (23)   | 2,0 (20) |  |  |

Показатели назначения клапанов приведены в таблице 5.

# Таблица 5

| Ľ                           |                                                                                                                            | Материальн                                                                                                                            | ое исполнение корпус                                                                                                         | ных деталей                                                                                                                                    |  |  |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\mathcal{L}_{\mathcal{L}}$ | loure parties parties parties                                                                                              | C                                                                                                                                     | лс                                                                                                                           | нж                                                                                                                                             |  |  |
|                             | Іаименование параметра                                                                                                     | Климатиче                                                                                                                             | ское исполнение по Г                                                                                                         | OCT 15150                                                                                                                                      |  |  |
|                             |                                                                                                                            | У1                                                                                                                                    | ХЛ1                                                                                                                          | УХЛ1                                                                                                                                           |  |  |
|                             | Класс опасности по<br>ГОСТ 12.1.007                                                                                        | 2, 3, 4                                                                                                                               | 2, 3, 4                                                                                                                      | 2, 3, 4                                                                                                                                        |  |  |
| Рабочая среда               | Группа по руководству по безопасности «Рекомендации по устройству и безопасной эксплуатации технологических трубопроводов» | Группа – Б (в), В (вода, воздух, пар аммиак, нефть, жидкие нефтепродукты и углеводороды, природный газ, масляные фракции и др. среды) | Группа – Б (в), В (вода, воздух, пар аммиак, природный газ, жидкие нефтепродукты и углеводороды, масляные фракции др. среды) | Группа – А, Б, В (вода, воздух, пар аммиак, природный газ, жидкие нефтепродукты и углеводороды, масляные фракции, нефтехимические и др. среды) |  |  |
| (E)                         | Коррозионная<br>устойчивость по ГОСТ<br>33260-2015                                                                         | Скорость коррозии материала корпуса не должна превышать<br>мм в год                                                                   |                                                                                                                              |                                                                                                                                                |  |  |

| Температура рабочей среды, °C | Уплотнение затвора «металл по металлу» (нж) |                    |                    |  |  |  |
|-------------------------------|---------------------------------------------|--------------------|--------------------|--|--|--|
|                               | от минус 40 до 425                          | от минус 60 до 425 | от минус 60 до 560 |  |  |  |
| (K)                           | Уплотнение затвора «мягкое» (п)             |                    |                    |  |  |  |
|                               | от минус 40 до 150 от минус 60 до 150       |                    |                    |  |  |  |
| Температура окружающего       |                                             | От минус 25 до 50  |                    |  |  |  |
| воздуха, °С                   | от минус 40 до 40                           | от минус           | 50 до 40           |  |  |  |

#### 1.2 Состав.

Принципиальная конструкция затвора представлена на рисунке 1.

Составными частями изделия являются:

1 – ЭИМ;

6 – тарелка;

11 – шайба прижимная;

2 – корпус;

7 – гайка сальника;

12 – прокладка;

3 – крышка;

8 – уплотнение сальниковое;

13 – болт.

4 – шток:

9 – гайка;

5 – седло;

10 - прокладка

### 1.3 Устройство и работа.

Рабочая среда проходит через корпус поз. 2, имеющий проходную конструкцию с патрубками на одной оси. Направление подачи рабочей среды – «под золотник».

Затвор состоит из тарелки поз.5 и седла поз.6. Крышка поз.3 обеспечивает направление штока поз.4. Сальниковый узел, образованный уплотнением сальниковым поз.8 и гайкой сальника поз.7, находится в крышке поз.3. Герметичность клапана относительно внешней среды обеспечивается прокладкой поз.10 и уплотнением сальниковым поз.8.

Управление клапаном осуществляется ЭИМ поз. 1 поступательного типа. Шток поз. 4 соединен со штоком ЭИМ, на который поступает сигнал от внешнего автоматического регулятора температуры или давления на открытие или закрытие клапана. Усилие, развиваемое прямоходным ЭИМ, передается на шток поз. 4 с закрепленной на нем тарелкой поз. 5. Шток поз. 4 с тарелкой поз. 5 перемещаются вверх или вниз, открывают или закрывают проходное отверстие седла поз.6.

- 1.4 Основные технические характеристики.
- 1.4.1 Основные технические данные и характеристики клапанов приведены в таблице

# Таблица 6

6.

| таолица о                                    |                            | 1 1 |          |          |       |           |           |            |              |           |       |     | \ \ |     |
|----------------------------------------------|----------------------------|-----|----------|----------|-------|-----------|-----------|------------|--------------|-----------|-------|-----|-----|-----|
| Диаметр<br>номинальный DN,<br>мм             | 15                         | 20  | 25       | 32       | 40    | 50        | 65        | 80         | 100          | 125       | 150   | 200 | 250 | 300 |
| Давление<br>номинальное PN,<br>Мпа (кгс/см²) | 1,6 (16) 2,5 (25) 4,0 (40) |     |          |          |       |           |           | 1,6<br>2,5 | (16)<br>(25) |           |       |     |     |     |
| Герметичность<br>затвора                     |                            |     | Клас     | с герм   | етичн | ости і    | 10 ГО     | CT 95      | 44: A,       | AA, I     | 3, C, | CC  |     |     |
| Тип ЭИМ                                      | ST mini, ST 0              |     |          |          |       |           | M         | 7          |              |           |       |     |     |     |
| Масса клапана, кг                            | 5,5                        | 6-  | 7-<br>12 | 9-<br>13 | 12-   | 16-<br>20 | 31-<br>33 | 34<br>-36  | 43<br>-46    | 68<br>-85 | 102   | 140 | 280 | 350 |

Основные технические данные и характеристики ЭИМ приведены в инструкции по монтажу, настройке и эксплуатации на ЭИМ.

# 1.4.2 Материал основных деталей, исполнение и другие технические данные указаны в паспорте на изделие.

# 1.5 Габаритные и присоединительные размеры. Габаритные и присоединительные размеры приведены в таблице 7.

Таблица 7

| DN . | PN     | D   | D1           | D2      | 1 E   | n   | d     |     |          |
|------|--------|-----|--------------|---------|-------|-----|-------|-----|----------|
| //   | 16     |     | 65           |         |       |     | (R)   |     |          |
| 15   | 25     | 95  |              | 47      | 130   |     |       |     |          |
|      | 40     |     |              |         |       |     |       |     |          |
|      | 16     |     | 75           |         |       |     |       |     |          |
| 20   | 25     | 105 |              | 58      | 150   |     | 14    |     |          |
|      | 40     |     |              |         |       |     |       |     |          |
| // ^ | 16     |     | 85           |         |       |     |       |     |          |
| 25   | 25     | 115 |              | 68      | 160   |     |       |     |          |
|      | 40     |     |              |         |       | 4   |       |     |          |
| 1 17 | 16     |     | <b>3</b> 100 |         |       |     | (3)   |     |          |
| 32   | 25     | 135 |              | 78      | 78    | 180 |       | (6) |          |
|      | 40     |     |              |         |       |     |       |     |          |
| 40   | 16     | 445 | 110          | 00      | 200   |     |       |     |          |
| 40   | 25, 40 | 145 |              | 88      | 200   |     |       |     | <u> </u> |
|      | 16     | 400 | 125          | 400     | 000   |     | 40    |     |          |
| 50   | 25, 40 | 160 |              | 102     | 230   |     | 18    |     |          |
| CE   | 16     | 100 | 145          | 400     | 200   |     |       |     |          |
| 65   | 25, 40 | 180 |              | 122     | 290   | 8   | // // |     |          |
| 90   | 16     | 10E | 160          | 122     | 210   | 4   | - //  |     |          |
| 80   | 25, 40 | 195 | \\           | 133     | 310   | (R) |       |     |          |
| 100  | 16     | 215 | 180          | 150     | 250   |     |       |     |          |
| 100  | 25, 40 | 230 | 190          | 158     | 350   |     | 22    |     |          |
| 125  | 16     | 245 | 210          | 101     | 400   | 8   | 18    |     |          |
| 125  | 25, 40 | 270 | 220          | 184     | 400   |     | 26    |     |          |
| 150  | 16     | 211 | 240          | 200     | 400   |     | 22    |     |          |
| 150  | 25, 40 | 211 | 250          | 280     | 480   |     | 26    |     |          |
|      | 16     | 355 | 295          | 268     |       |     | 22    |     |          |
| 200  | 25     | 360 | 310          | 278     | 600   |     | 26    |     |          |
|      | 40     | 375 | 320          | 285     | -     |     | 30    |     |          |
|      | 16     | 405 | 355          | 320     | //    |     | 26    |     |          |
| 250  | 25     | 425 | 370          | 335 730 |       | 30  |       |     |          |
|      | 40     | 445 | 385          | 345     | 1//   |     | 33    |     |          |
| R    | 16     | 460 | 410          | 370     | 1/ 11 |     | 26    |     |          |
| 300  | 25     | 485 | 430          | 390     | 850   | 10  | 30    |     |          |
|      | 40     | 510 | 450          | 410     |       | 16  | 33    |     |          |

# 1.6 Показатели надежности.

Назначенный срок службы – 10 лет.

Назначенный ресурс – 70 000 циклов.

Наработка на отказ – 10 000 часов.

- 1.6.1 Потенциально возможными отказами клапанов являются:
- потеря прочности корпусных деталей;

- потеря плотности материала корпусных деталей;
- потеря герметичности неподвижных прокладочных соединений деталей по отношению к внешней среде;
  - потеря герметичности затвора;
- нарушение геометрической формы деталей, препятствующее нормальному функционированию (заклинивание подвижных частей, неустранимые повреждения рабочих поверхностей затвора, неустранимый дополнительной подтяжкой пропуск среды через сальник, срез резьбы);
- изменение размеров вследствие износа или коррозионного разрушения, препятствующее нормальному функционированию.
  - 1.6.2 Критериями предельного состояния клапанов являются:
- •Начальная стадия нарушения целостности корпусных деталей (потение, капельная течь);
- •Недопустимое изменение размеров элементов по условиям прочности и функционирования арматуры;
  - •потеря герметичности в разъемных соединениях, неустранимая их подтяжкой;
  - •возникновение трещин на основных деталях;
- •увеличение крутящего момента при управлении арматурой до значений выше норм, указанных в эксплуатационной документации ЭИМ.

Предельные состояния клапана предшествует его отказам.

- 1.6.3 В случае критического отказа, при необходимости проведения ремонта изделия, персонал должен выполнить рекомендации по устранению согласно п. 3.3 настоящего РЭ.
  - 1.7 Маркировка и пломбирование.
- 1.7.1 На лицевой стороне корпуса клапана выполнена маркировка литым способом: PN, DN, стрелка направления подачи рабочей среды, материал корпуса. На обратной стороне товарный знак предприятия-изготовителя.

На табличке, прикрепленной к крышке клапана, указаны: знак обращения на рынке TC, наименование предприятия-изготовителя, таблица фигур, PN, DN, заводской номер, дата изготовления.

- 1.7.2 Наружные поверхности клапана должны быть окрашены в соответствии с ГОСТ 4666, эмаль НЦ-132 ГОСТ 6631 (с серая, лс синяя, нж голубая) или в цвет по согласованию с Заказчиком.
  - 1.7.3 Разъемные соединения клапана должны иметь гарантийные пломбы.

Места гарантийного пломбирования, указанные в сборочных чертежах, должны быть отмечены пятном эмалью красной НЦ-132 ГОСТ 6631.

### 1.8 Консервация

Клапан должен быть подвергнут консервации, обеспечивающей защиту от коррозии при транспортировании и хранении не менее 3 лет.

Вариант защиты – ВЗ-1 ГОСТ 9.014.

Консервация всех неокрашенных (обработанных и необработанных) поверхностей деталей должна производиться маслом консервационным К-17 ГОСТ 10877. Слой масла после нанесения должен быть сплошным, без воздушных пузырей и инородных включений.

Допускается вариант защиты ВЗ-0 по ГОСТ 9.014.

#### 1.9 Упаковка.

Упаковка должна обеспечивать защиту клапана от повреждений при транспортировании и хранении.

Категория упаковки – КУ-2 по ГОСТ 23170.

Вариант упаковки – ВУ-1 по ГОСТ 9.014.

Клапан должен быть завернут в бумагу упаковочную, при этом внутренние полости должны быть предохранены от загрязнений заглушками, и упакован в ящик дощатый по ГОСТ 2991 или ящик из гофрированного картона по ГОСТ 9142.

Сопроводительная документация должна быть герметично упакована в пакет по ГОСТ 12302, изготовленный из полиэтиленовой пленки по ГОСТ 10354. Пакет с документацией закрепляется на самом изделии.

Маркировка транспортной тары – по ГОСТ 14192.

#### 2 Использование по назначению

- 2.1 Подготовка к использованию.
- 2.1.1 Объем и последовательность внешнего осмотра изделия.

При получении груза с клапаном следует убедиться в полной сохранности тары. При наличии повреждений следует составить акт в установленном порядке и обратиться с рекламацией к транспортной организации.

Распаковать ящик, вынуть изделие. Проверить комплектность поставки в соответствии с паспортом.

Внешним осмотром проверить:

- отсутствие внешних механических повреждений клапана;
- соединение клапана с ЭИМ;
- легкость перемещения штока ЭИМ, переместив его на несколько миллиметров от первоначального положения с помощью ручного дублера (шток должен перемещаться плавно без рывков).
  - 2.1.2 Меры безопасности при подготовке изделия к использованию:
- необходимо соблюдать общие правила техники безопасности при работе с трубопроводной арматурой;
- строповка клапана должна осуществляться за элементы конструкции. Запрещается строповка за ЭИМ;
- перед установкой клапана на трубопровод необходимо из внутренних полостей и с привалочных плоскостей удалить консервационную смазку, а затем промыть их уайт-спиритом.

#### 2.2 Указания по монтажу:

• установочное положение относительно трубопровода — преимущественно горизонтальное (ЭИМ вверх), допустимое — до 90° от вертикали с расположением стоек ЭИМ в одной вертикальной плоскости, а для DN≥150мм обязательное — горизонтальное, ЭИМ вверх. При наклонном расположении клапана под ЭИМ следует установить опоры. Установка ниже горизонтальной линии запрещается;

- учитывать пространство, необходимое для демонтажа крышки ЭИМ при настройке (указывается в инструкции по эксплуатации ЭИМ);
- устанавливать клапан на трубопровод следует так, чтобы направление движения среды совпадало с направлением стрелки на корпусе;
- рабочая среда не должна содержать механических примесей более 70мкм. Если размер частиц превышает 70мкм, то перед затвором должен быть установлен фильтр;
- электромонтаж производить в соответствии с эксплуатационной документацией на ЭИМ;
  - корпус ЭИМ должен быть обязательно заземлен;
- перед пуском системы непосредственно после монтажа все клапаны должны быть открыты и должна быть произведена тщательная промывка и продувка системы;
- рекомендуется устанавливать клапаны на трубопроводах, имеющих прямые участки до и после клапана длиной не менее 10 условных проходов (DN);
- Клапан не должен испытывать нагрузок от трубопровода (изгиб, сжатие, растяжение, кручение, перекосы, вибрация, несоосность патрубков, неравномерность затяжки крепежа). При необходимости должны быть предусмотрены опоры или компенсаторы, снижающие нагрузку от трубопровода;
- место установки клапана должно обеспечивать условия проведения осмотров и ремонтных работ. При расположении клапана на высоте более 1,6м следует предусматривать специальные площадки и лестницы для проведения осмотра при эксплуатации;
- при установке на открытом воздухе клапан должен быть защищен от прямого воздействия солнечных лучей и атмосферных осадков.

# 3 Техническое обслуживание

3.1 Общие указания.

В процессе эксплуатации следует производить периодические осмотры в сроки, установленные графиком, в зависимости от режима работы системы, но не реже одного раза в 6 месяцев.

При осмотре необходимо проверить:

- общее состояние затвора;
- состояние крепежных соединений (при необходимости произвести их подтяжку);
- герметичность прокладочных соединений и сальникового уплотнения.
- 3.2 Меры безопасности.
- 3.2.1 Требования безопасности при монтаже и эксплуатации по ГОСТ 12.2.063.
- 3.2.2 Персонал, производящий работы с клапанами, а также консервацию и переконсервацию их, должен пройти инструктаж по технике безопасности, быть ознакомлен с инструкцией по эксплуатации и обслуживанию, иметь индивидуальные средства защиты (спецодежду, очки, рукавицы и т.д.), соблюдать требования пожарной безопасности.
- 3.2.3 В конструкции электроприводов должно быть предусмотрено устройство для подключения заземления в соответствии с «Правилами устройства электроустановок» и ГОСТ 12.2.007.0.

Для обеспечения безопасной эксплуатации различных технологических линий приводные устройства должны иметь конечные выключатели для сигнализации и отключения ЭИМ в конечных положениях.

Органы управления клапана должны исключать возможность их самопроизвольного включения.

Электроприводы должны иметь ручной дублер управления.

- 3.2.4 возможные ошибочные действия персонала, которые приводят к инциденту или аварии:
- производить работы по ремонту и демонтажу при наличии давления среды в полости клапана;
- производить подтяжку и замену сальникового уплотнения, подтяжку фланцевых соединений при наличии давления в системе;
  - снимать клапан с трубопровода при наличии в нем рабочей среды;
  - использовать клапан в качестве опоры для трубопровода;
- класть на клапан и приводные устройства отдельные детали или монтажный инструмент при монтаже;
  - применять уплотнения большего или меньшего сечения;
  - применять удлинители к ключам крепежных деталей;
  - эксплуатировать клапан без заземления ЭИМ.

## 3.3 Неисправности и методы их устранения.

Перечень возможных неисправностей в процессе эксплуатации и рекомендации по их устранению приведены в таблице 8.

# Таблица 8

| Наименование неисправностей, внешнее проявление и признаки      | Вероятная причина                                                                                                      | Способ устранения                                                                                                                                                                                 |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 //                                                            | 2                                                                                                                      | 3                                                                                                                                                                                                 |
| 1. Шток не совершает полный ход                                 | Клапан разрегулирован по ходу                                                                                          | 1.Произвести регулировку хода                                                                                                                                                                     |
| 2. Перемещение штока<br>затруднено                              | Загрязнились или заели (повредились) подвижные детали клапана                                                          | 1. Разобрать клапан, промыть, прочистить от грязи, зачистить возможные задиры. Смазать все подвижные детали, несоприкасающиеся со средой, смазкой ЦИАТИМ-221 ГОСТ 9433, собрать, настроить клапан |
| 3. Пропуск среды через место соединения корпуса с крышкой       | Недостаточно уплотнена прокладка     Повреждена прокладка                                                              | 1. Уплотнить место соединения равномерной затяжкой гаек 2. Заменить прокладку                                                                                                                     |
| 4. Температура корпуса электродвигателя ЭИМ выше рабочей (65°C) | 1. Повреждена электросхема, неправильное электроподключение на месте эксплуатации 2. Сильная затяжка сальникового узла | 1. Проверить монтаж и электросхему 2. Ослабить гайку сальника с сохранением его герметичности в пределах рабочего режима клапана                                                                  |
| 5. Не герметичность сальника                                    | 1. Ослаблена затяжка гайки сальникового узла 2. Повреждены уплотнительные кольца                                       | 1. Уплотнить сальник дополнительной затяжкой гайки 2. Заменить кольца                                                                                                                             |

- 3.4 Порядок разборки и сборки.
- 3.4.1 При разборке и сборке клапана обязательно:

- выполнять требования безопасности, изложенные в п. 3.2 настоящего РЭ;
- предохранять уплотнительные, резьбовые и направляющие поверхности от повреждения.
- 3.4.2 Полную разборку клапана (см. рис.2) производить в следующем порядке:
- с помощью ЭИМ поз.1 отвести тарелку поз.5 в положение «открыто»;
- отключить электропитание, отсоединить провода и контур заземления ЭИМ поз. 1, снять клапан с трубопровода;
- ослабить контргайку поз.8, отвернуть гайку поз. 6 и вывернуть шток поз. 4 из присоединительной муфты ЭИМ поз. 1;

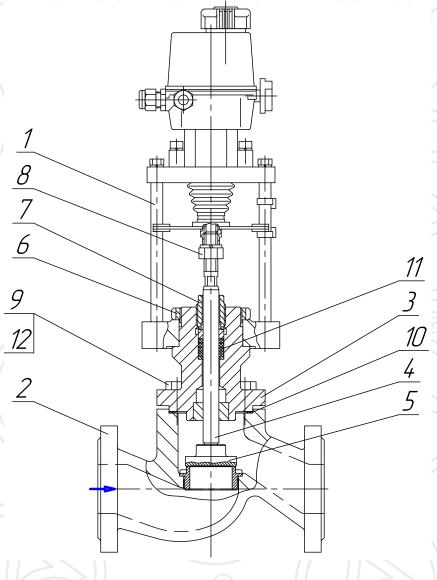



Рисунок 2

- снять ЭИМ поз.1 с клапана;
- отвернуть гайки поз. 9 (или болты поз. 12), снять крышку поз. 3;
- извлечь прокладку поз. 10 из корпуса поз.2;
- отвернуть контргайку поз.8, ослабить гайку сальника поз. 7, извлечь шток поз. 4 из крышки поз. 3;
  - вывернуть гайку сальника поз. 7 из крышки поз. 3, извлечь уплотнение сальниковое поз. 11.

- 3.4.3 Сборку клапана производить в порядке, обратном разборке, при этом тщательно очистить все детали от загрязнения, промыть, трущиеся поверхности, несоприкасающиеся с рабочей средой, смазать консистентной смазкой.
- 3.4.4 При сборке клапана необходимо произвести настройку присоедини тельного размера H, указанного в инструкции по эксплуатации привода.
  - 3.4.5 Собранный клапан подвергнуть следующим испытаниям:
- на герметичность прокладочных соединений и сальникового уплотнения относительно внешней среды;
  - на герметичность затвора;
  - на работоспособность.
  - 3.5 Испытания.
- 3.5.1 Испытание на герметичность прокладочных соединений сальникового уплотнения относительно внешней среды проводятся водой давлением PN при открытом затворе, заглушенном выходном патрубке и подаче среды во входной патрубок с выдерживанием при установившемся давлении в течение времени, необходимого для осмотра, но не менее 3 мин.

Пропуск воды в затворе не должен превышать значений, указанных в таблице 9, что соответствует классам герметичности по ГОСТ 9544.

| Ta | бл | IИL | ıa | 9 |
|----|----|-----|----|---|
|    |    |     |    |   |

|        |            | K                  | ласс герметичност    | И               |            |
|--------|------------|--------------------|----------------------|-----------------|------------|
| DN, мм | Α          | AA                 | В                    | С               | CC         |
|        | Максима    | ально допустимая у | течка, см³/мин (по г | тробному вещест | ву «вода») |
| 15     |            | 0,005              | 0,009                | 0,027           | 0,072      |
| 20     |            | 0,007              | 0,012                | 0,036           | 0,100      |
| 25     | e<br>X     | 0,009              | 0,015                | 0,045           | 0,120      |
| 32     | D To       | 0,011              | 0,019                | 0,058           | 0,160      |
| 40     | \ <u>F</u> | 0,014              | 0,024                | 0,072           | 0,190      |
| 50     | протечек   | 0,018              | 0,030                | 0,090           | 0,240      |
| 65     |            | 0,023              | 0,039                | 0,120           | 0,310      |
| 80     | Видимых    | 0,029              | 0,048                | 0,140           | 0,380      |
| 100    | 의 불 [      | 0,036              | 0,060                | 0,180           | 0,480      |
| 125    | Ž //       | 0,045              | 0,078                | 0,230           | 0,600      |
| 150    |            | 0,054              | 0,090                | 0,270           | 0,720      |
| 200    | Pe3        | 0,072              | 0,120                | 0,360           | 0,960      |
| 250    | 11         | 0,090              | 0,150                | 0,450           | 1,200      |
| 300    |            | 0,110              | 0,180                | 0,540           | 1,400      |

Пропуск среды через места соединений не допускается.

3.5.2 Испытания на герметичность затвора следует производить подачей воды давлением ΔРисп=1,1PN во входной патрубок, при этом выходной патрубок должен быть сообщен с атмосферой. Затвор должен быть закрыт с помощью ЭИМ.

Выдержка при установившемся давлении – не менее 3 мин.

При контроле герметичности затвора арматуры класса герметичности «А» не являются браковочными признаками:

- образование росы, не превращающейся в стекающие капли, по контуру уплотнительной поверхности;
- при применении средств технического диагностирования либо технических средств утечка в затворе не более 0,0009 см³/мин.

Клапаны, предназначенные для газообразных сред, дополнительно испытываются на герметичность в затворе воздухом давлением P=0,6Мпа (6кгс/см). Испытания на герметичность в затворе проводить при закрытом вручную затворе и установочном положении клапана боковыми фланцами по вертикали.

Крутящий момент на маховике не должен превышать номинального значения, указанного в конструкторской документации. В условно входной патрубок подается воздух давлением Р, в условно выходной – должна быть залита вода. Время выдержки при установившемся давлении – 3 мин.

Пропуск воздуха в затворе не должен превышать значений, указанных в таблице 10, что соответствует классам герметичности по ГОСТ 9544.

Таблица 10

|        | Класс герметичности                                                    |      |      |      |       |
|--------|------------------------------------------------------------------------|------|------|------|-------|
| DN, мм | A                                                                      | AA   | В    | С    | CC    |
|        | Максимально допустимая утечка, см³/мин (по пробному веществу «воздух») |      |      |      |       |
| 15     |                                                                        | 0,16 | 0,27 | 2,7  | 20,0  |
| 20     |                                                                        | 0,22 | 0,36 | 3,6  | 27,0  |
| 25     | e<br>X                                                                 | 0,27 | 0,45 | 4,5  | 33,0  |
| 32     | ed (                                                                   | 0,35 | 0,58 | 5,8  | 43,0  |
| 40     | //5                                                                    | 0,43 | 0,72 | 7,2  | 54,0  |
| 50     | протечек                                                               | 0,54 | 0,90 | 9,0  | 66,0  |
| 65     |                                                                        | 0,72 | 1,20 | 12,0 | 84,0  |
| 80     | Αb                                                                     | 0,84 | 1,40 | 14,0 | 108,0 |
| 100    | видимых                                                                | 1,10 | 1,80 | 18,0 | 132,0 |
| 125    | 37,7                                                                   | 1,40 | 2,30 | 23,0 | 168,0 |
| 150    |                                                                        | 1,60 | 2,70 | 27,0 | 198,0 |
| 200    | Без                                                                    | 2,20 | 3,60 | 36,0 | 270,0 |
| 250    | 11 -                                                                   | 2,70 | 4,50 | 45,0 | 336,0 |
| 300    |                                                                        | 3,20 | 5,40 | 54,0 | 402,0 |

При контроле герметичности затвора арматуры класса герметичности «А» не являются браковочными признаками:

- образование не отрывающихся пузырьков;
- при применении средств технического диагностирования либо технических средств утечка в затворе не более 0,003 см³/мин.

После переустановки клапана испытания повторяют в той же последовательности.

3.5.3 Испытание на работоспособность следует производить путем трехкратного срабатывания клапана с помощью ЭИМ на величину полного хода без подачи среды в клапан. Дополнительно необходимо проверить работу ручного дублера, конечных выключателей.

Клапан считается работоспособным, если все подвижные детали перемещаются плавно, без заеданий и рывков, а дополнительные блоки выполняют свои функции.

3.5.4 клапаны, предназначенные для газообразных сред, дополнительно испытываются на герметичность прокладочных соединений и сальникового уплотнения воздухом давлением P=0,6Mпа (6кгс/см²) пузырьковым методом способом обмыливания.

Клапан считают герметичным относительно внешней среды, если при установившемся давлении в течение не менее 3 мин не обнаружено появления мыльных пузырьков.

### 4 Хранение

- 4.1 Клапаны следует хранить в упаковке предприятия-изготовителя в закрытых складских помещениях при температуре от 5 до 50°С и относительной влажности до 80%, обеспечивающих сохранность упаковки и исправность клапанов в течение гарантийного срока.
- 4.2 клапаны, находящиеся на длительном хранении, подвергаются периодическому осмотру не реже одного раза в год. При нарушении консервации произвести консервацию вновь. Консервационную смазку наносить на обезжиренную чистую и сухую поверхность деталей. Обезжиривание производить чистой ветошью, смоченной в бензине.

# 5 Транспортирование

5.1 Условия транспортирования должны обеспечивать сохранность клапанов и их упаковки.

Клапаны перевозят транспортом всех видов в соответствии с правилами перевозки грузов, действующими на транспорте данного вида.

5.2 Условия транспортирования - по группе 4 (Ж2) ГОСТ 15150.

Для клапанов, упакованных в ящики из гофрированного картона по ГОСТ 9142, условия транспортирования в части воздействия климатических факторов внешней среды – по группе 5 (ОЖ4) ГОСТ 15150, а в части воздействия механических факторов – легкие (Л) и средние (С) по ГОСТ 23170.

5.3 Допускается транспортирование клапанов DN300 без тары при условии обеспечения изготовителем или поставщиком надежной установки и крепления клапанов на транспортном средстве и защиты от воздействия окружающей среды.

Механические повреждения и загрязнения внутренних поверхностей клапанов и уплотнительных поверхностей фланцев при транспортировании допускается снимать последние, укладывая их вместе с крепежными деталями в одну тару с клапаном.

5.4 При поставке клапанов с ответными фланцами при транспортировании допускается снимать последние, укладывая их вместе с крепежными деталями в одну тару с клапаном.

## 6 Утилизация

Перед отправкой на утилизацию из арматуры удаляют остатки рабочей среды. Методики удаления рабочей среды и дезактивации арматуры должны быть утверждены в установленном порядке.

Изделие не представляет опасности для жизни, здоровья людей и окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем клапан.

