

КЛАПАН РЕГУЛИРУЮЩИЙ ДВУХСЕДЕЛЬНЫЙ РN63

СДС 63.025-00.00.000 РЭ Руководство по эксплуатации

Содержание

1	Описание и работа	3
	1.1 Назначение	3
	1.2 Состав	5
	1.3 Устройство и работа клапана с ЭИМ	. 5
	1.4 Устройство и работа клапана с МИМ	6
	1.5 Габаритные и присоединительные размеры	6
	1.6 Основные технические характеристики	. 11
	1.7 Показатели надежности	11
	1.8 Маркировка и пломбирование	12
	1.9 Консервация	13
	1.10 Упаковка	13
2	Использование по назначению	13
	2.1 Подготовка к использованию	13
	2.2 Указания по монтажу	14
3	Техническое обслуживание	14
	3.1 Общие указания	14
	3.2 Меры безопасности	14
	3.3 Неисправности и методы их устранения	15
	3.4 Порядок разборки и сборки	15
	3.5 Испытания	17
4	Хранение	17
5	Транспортирование	18
6	Утилизация	18

Производитель оставляет за собой право изменять конструкцию без изменения основных характеристик изделия.

Настоящее руководство по эксплуатации (далее РЭ) предназначается для ознакомления потребителя с устройством, функциональными свойствами, правилами монтажа, эксплуатации и хранения, соблюдение которых обеспечит полное использование технических возможностей изделия в течение срока службы. РЭ распространяется на клапаны регулирующие двухседельные (далее клапаны) на номинальное давление РN63 (6,3Мпа):

- с электрическим исполнительным механизмом (далее ЭИМ);
- с мембранным исполнительным механизмом (далее МИМ) нормально-открытые (HO), нормально-закрытые (H3).

Клапан с ЭИМ обозначается таблицей фигур 25с998нж, 25лс998нж, 25нж998нж:

- тип арматуры (клапан регулирующий);

с, лс, нж - материал корпуса (сталь углеродистая/сталь легированная/сталь коррозионно-стойкая);

9 - вид привода (электрический);

98 - номер модели;

нж - материал уплотнительных поверхностей (нж – сталь коррозионностойкая).

Клапан с МИМ обозначается таблицей фигур 25с48нж (HO), 25лс48нж (HO), 25нж48нж (HO), 25с50нж (H3), 25лс50нж (H3), 25нж50нж (H3):

- тип арматуры (клапан регулирующий);

с, лс, нж - материал корпуса (сталь углеродистая/сталь легированная/сталь коррозионно-стойкая);

48, 50 - номер модели (НО, НЗ);

- материал уплотнительных поверхностей (нж – сталь коррозионностойкая).

1 Описание и работа

1.1 Назначение.

Клапаны регулирующие предназначены для автоматического управления технологическими процессами различных производств с целью непрерывного регулирования параметров рабочей среды (расхода, температуры) путем изменения пропускной способности на технологических трубопроводах в системах ЖКХ, приточной вентиляции, кондиционирования воздуха, а также пищевого, химического, нефтехимического и нефтеперерабатывающего производства и изготавливаются в соответствии с требованиями ТУ 3742-016-22294686-2013 и по рабочим чертежам, утвержденным в установленном порядке.

Присоединение к трубопроводу – фланцевое. Технические требования к фланцам клапанов, конструкция и размеры, присоединительные размеры и размеры уплотнительных поверхностей фланцев – тип 21 по ГОСТ 33259. По умолчанию клапаны изготавливаются с фланцевым присоединением – исполнение D ряд 1 по ГОСТ 33259, по согласованию с Заказчиком – исполнение F ряд 1 по ГОСТ 33259.

Ответные фланцы – приварные встык тип 11 по ГОСТ 33259, исполнение С ряд 1 и исполнение Е ряд 1.

Исполнение представлены на рисунках 1, 2, 3, 4.

Клапаны с ЭИМ должны комплектоваться ЭИМ общепромышленного исполнения.

Клапаны с ЭИМ, предназначенные для взрывопожароопасных сред, должны комплектоваться ЭИМ во взрывозащищенном исполнении.

Клапаны с МИМ могут комплектоваться дополнительными блоками ручного управления, контроля и автоматизации (пневмопозиционер, электропневмопозиционер, фильтр-стабилизатор давления воздуха, концевые выключатели конечных положений, электропневмоклапан). При применении клапана для взрывопожароопасных сред МИМ должен быть укомплектован электропневматическим позиционером во взрывозащищенном исполнении.

Материал основных деталей указан в таблице 1.

Таблица 1

Цамионования датолой	Материальное исполнение				
Наименование деталей	С	лс	нж		
Корпус, крышка	Сталь 25Л ГОСТ 977	Сталь 20ГЛ ГОСТ 21357	Сталь 12X18Н9ТЛ ГОСТ 977		
Плунжер, седло	Сталь 20х	Сталь 14X17H2 ГОСТ 5632			
Уплотнение сальниковое	R	TPF	0		
Гайка сальника		ЛС59-1 ГОСТ 2060			
Прокладка		TPF			
Шпилька, гайка	Сталь 35 ГОСТ 1050	Сталь 20ХНЗА ГОСТ 4543	Сталь 14X17H2 ГОСТ 5632		

Показатели назначения клапанов приведены в таблице 2.

Таблица 2

		Материальное исполнение корпусных деталей					
		(R) C	лс	жн			
	Наименование параметра	Климатич	еское исполнение по Г	OCT 15150			
		У1	ХЛ1	УХЛ1			
	Класс опасности по ГОСТ	3, 4	3, 4	3, 4			
Да	12.1.007						
ая сре	Группа по Руководству по безопасности «Рекомен-дации по устройству и безо-	Группа – Б (в), В (вода, воздух, пар, аммиак, нефть, жидкие нефтепродукты и углеводороды, масляные фракции др. сред					
Рабочая	пасной эксплуатации техно- логических трубопроводов»	Cuanast unanasuus					
Рабоч	пасной эксплуатации техно-	Скорость коррозии	материала корпуса не 0,5 мм в год	е должна превышать			
٩	пасной эксплуатации техно- логических трубопроводов» Коррозионная устойчивость	Скорость коррозии от минус 40 до 425		е должна превышать			
<u> </u>	пасной эксплуатации техно- логических трубопроводов» Коррозионная устойчивость по ГОСТ 33260-2015	от минус 40 до 425	0,5 мм в год	от минус 60 до 560			
<u>C</u> Te	пасной эксплуатации техно- логических трубопроводов» Коррозионная устойчивость по ГОСТ 33260-2015 мпература рабочей среды, °с	от минус 40 до 425	0,5 мм в год от минус 60 до 425	от минус 60 до 560			
Te	пасной эксплуатации техно- логических трубопроводов» Коррозионная устойчивость по ГОСТ 33260-2015 мпература рабочей среды, °с мпература окружающего	от минус 40 до 425 Е	0,5 мм в год от минус 60 до 425 Вид управления – с МИ	от минус 60 до 560 1М			
Te	пасной эксплуатации техно- логических трубопроводов» Коррозионная устойчивость по ГОСТ 33260-2015 мпература рабочей среды, °с мпература окружающего	от минус 40 до 425 Е	0,5 мм в год от минус 60 до 425 Вид управления – с МИ От минус 35 до 40	от минус 60 до 560 1М			

Строительные длины клапанов – по ГОСТ 16587.

Пробное и рабочие давления – по ГОСТ356. Пределы применения клапанов в зависимости от материала корпусных деталей и температуры рабочей среды указаны в таблицах 3 и 4.

Таблица 3							
Условное Пробное		Ma	гериальное	исполнение	е корпусных	деталей – с	;, л с
давление PN, Мпа	давление Рпр, Мпа	Рабоче	ее давление	Рр, Мпа (кі	гс/см²) при т	емпературе	среды
(кгс/см ²)	(кгс/см ²)	200°C	250°C	300°C	350°C	400°C	425°C
6,3 (63)	9,5 (95)	6,3 (63)	5,4 (54)	4,8 (48)	4,0 (40)	3,7 (37)	3,2 (32)

Таблица 4

Условное	Пробное	Ma	териальное	е исполнение	е корпусны	х деталей –	НЖ
давление PN, Мпа	давление Рпр, Мпа	Рабоче	е давление	с/см²) при т	емпературе	среды	
(кгс/см ²)	(кrc/см²)	200°C	250°C	300°C	350°C	400°C	425°C
6,3 (63)	9,5 (95)	6,3 (63)	5,4 (54)	4,8 (48)	4,0 (40)	3,7 (37)	3,2 (32)

1.2 Состав.

Принципиальная конструкция клапана регулирующего с ЭИМ представлена на рисунке 1, клапана регулирующего типа НО с МИМ - на рисунке 2, клапана регулирующего типа НЗ с МИМ – на рисунке 3.

Клапан имеет двухседельную конструкцию, в которой проходные площади образованы двумя параллельно работающими затворами, расположенными на одной оси. Тип основного разъема «корпус-крышка» - соединение неподвижной фланцевое с уплотнением «выступ-впадина».

Тип уплотнения подвижных соединений относительно внешней среды – сальниковый. Конструктивное исполнение уплотнения в затворе – конусное, «металл по металлу».

1.3 Устройство и работа клапана регулирующего с ЭИМ.

Рабочая среда проходит через корпус литой поз.2 имеющий проходную конструкцию с патрубками на одной оси. Направление подачи рабочей среды – одностороннее (по направлению стрелки на корпусе).

Затвор состоит из плунжера поз.5 и двух седел поз.6 и поз.7. Крышка поз.3 и крышка глухая поз.4 обеспечивают направление плунжера поз.5.

Герметичность клапана относительно внешней среды обеспечивается прокладками поз.10 и поз.11 и уплотнением сальниковым поз.8.

Крепление фланцевого разъема «корпус-крышка» обеспечивается шпильками поз.13, гайками поз.14, шайбами поз.15. Крепление фланцевого разъема «корпус-крышка глухая» обеспечивается шпильками поз.16, гайками поз.17, шайбами поз.18.

Уплотнение сальниковое поз.8 располагается в сальниковой камере крышки поз.3 и уплотняется гайкой сальника поз.9.

Гайка шлицевая поз.12 обеспечивает крепление ЭИМ поз.1 на крышке поз.3.

Плунжер поз.5 соединен со штоком ЭИМ с помощью резьбовой муфты, при этом обеспечивается настройка присоединительного размера, указанного в инструкции

по эксплуатации ЭИМ. Положение плунжера поз.5 фиксируется гайкой поз.19 и шайбой поз.20.

Управление клапаном осуществляется ЭИМ поз.1 поступательного типа, на который поступает сигнал от внешнего автоматического регулятора температуры или давления на открытие или закрытие клапана. Усилие, развиваемое ЭИМ, передается на плунжер поз.5, который перемещается вверх и вниз, открывая или закрывая проходные отверстия седел поз.6 и 7, тем самым регулируя расход рабочей среды.

При отсутствии управляющего электрического сигнала положение плунжера закреплено.

1.4 Устройство и работа клапана регулирующего с МИМ.

Конструкция клапана с МИМ аналогична устройству клапана с ЭИМ.

Клапан регулирующий типа НО – регулирующий клапан, в котором при прекращении подачи энергии внешнего источника затвор полностью открывается.

Клапан регулирующий типа H3 – регулирующий клапан, в котором при прекращении подачи энергии внешнего источника затвор полностью закрывается.

Управление клапаном осуществляется МИМ поз.1 в соответствии с входным пневматическим сигналом (командным давлением воздуха), который подается непосредственно из питающей сети или через пневмопозиционер. МИМ работает по принципу компенсации усилий мембраны, жестко соединенной со штоком привода, и пружин. Пневматический входной сигнал от управляющего устройства поступает в мембранную полость и воздействует на мембрану. При этом усилие пружин противодействует усилию, создаваемому давлением сжатого воздуха.

Полное перемещение плунжера в положение «закрыто» (для типа НО) и в положение «открыто» (для типа НЗ) должно осуществляться при изменении управляющего давления воздуха в МИМ от минимального значения перестановочного диапазона до максимального. При работе с ручным дублером перемещение плунжера вниз осуществляется вращением маховика по часовой стрелке, вверх – против часовой.

Принцип действия клапана типа НО: До подачи воздуха в МИМ поз.1 плунжер поз.5 находится в верхнем положении, проходные сечения полностью открыты. Усилие, развиваемое мембраной МИМ поз.1, передается на плунжер поз.5, который перемещается вниз, изменяя проходные сечения в затворе клапана и регулируя расход рабочей среды. Дальнейшее повышение командного давления приводит к перекрытию потока рабочей среды. Полный ход плунжера поз.5 происходит при изменении командного давления от 0,4±0,05 до 1,2±0,05кгс/см². При уменьшении давления в МИМ поз.1 плунжер поз.5 перемещается вверх и открывает проходные сечения седел поз.6 и поз.7 полностью при 0,4±0,05кгс/см².

Принцип действия клапана типа H3: До подачи командного давления в MИМ поз.1 плунжер клапана поз.5 находится в верхнем положении, перекрывая затвор. При повышении давления от 0.4 ± 0.05 до 1.2 ± 0.05 кгс/см² плунжер поз.5 совершает полный ход и полностью открывает проходные сечения седел поз.6 и поз.7.

1.5 Габаритные и присоединительные размеры. Габаритные и присоединительные размеры приведены в таблице 5.

Таблица 5	-// //			// //	~ //
DN	25	40	50	80	100
D	135	165	175	210	250
D1	100	125	135	170	200
D2	68	88	102	133	158
	210	260	300	380	430
b	22	25	26	30	32
\\ h	2	(B)	3	>	0
\\ n		4		8	
d	18		22		26
D5	42	60	72	105	128
D6	58	76	88	121	150
H2			3 (8)		
Н		при к	омплектации Э	ИМ	
ST 0	500	-// //	- //	/ - /	// //
ST 0.1	585	605	625	675	-//-
ST1/ST 1-Ex	725	745	765	820	945
//H //		при ко	омплектации М	ИМ	3)
МИМ 200	615	-	U - //	-	- 11
МИM250	// - 🕟	695	715	//-~	// - //
МИМ 320	11 - 11 3	\ \ \ \-		1015	11-
МИМ 400	-	-> -			1130

Исполнение D Исполнение F h2 h2

Рисунок 1. Исполнения D и F

Рисунок 2. Клапан регулирующий с ЭИМ

1 — ЭИМ
2 – корпус
3 – крышка
4- крышка глухая
5 – плунжер
6 – седло
7 - седло

8 – уплотнение сальниковое	
9 – гайка сальника	
10 – прокладка	
11 – прокладка	
12 – гайка шлицевая	
13 – шпилька	
14 - гайка	

15 – шайба	
16 – шпилька	
17 – гайка	
18 – шайба	
19 – гайка	
20 - шайба	

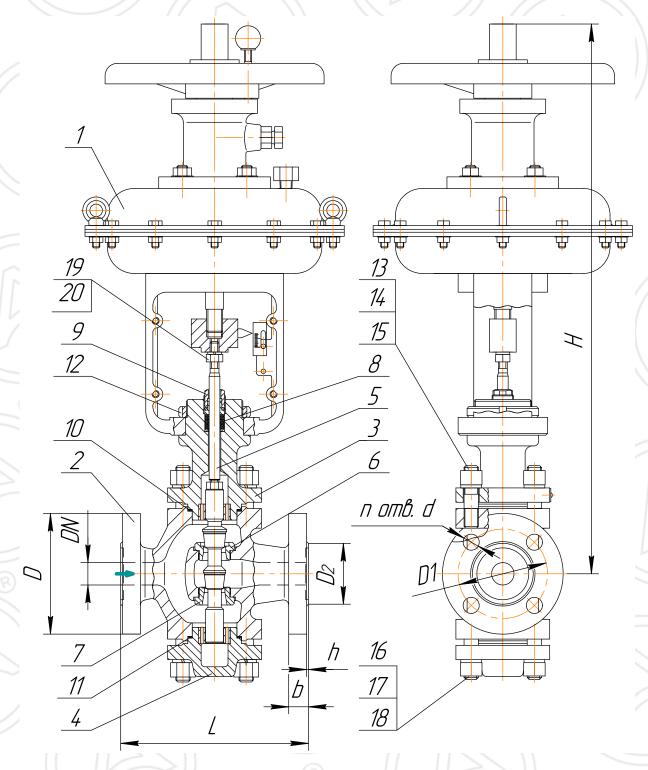


Рисунок 3. Клапан регулирующий типа НО с МИМ

1 – МИМ	8 – уплотнение сальниковое	15 – шайба
2 – корпус	9 – гайка сальника	16 – шпилька
3 – крышка	10 – прокладка	17 – гайка
4 – крышка глухая	11 – прокладка	18 – шайба
5 – плунжер	12 – гайка шлицевая	19 – гайка
6 – седло	13 – шпилька	20 - шайба
7 - седло	14 - гайка	

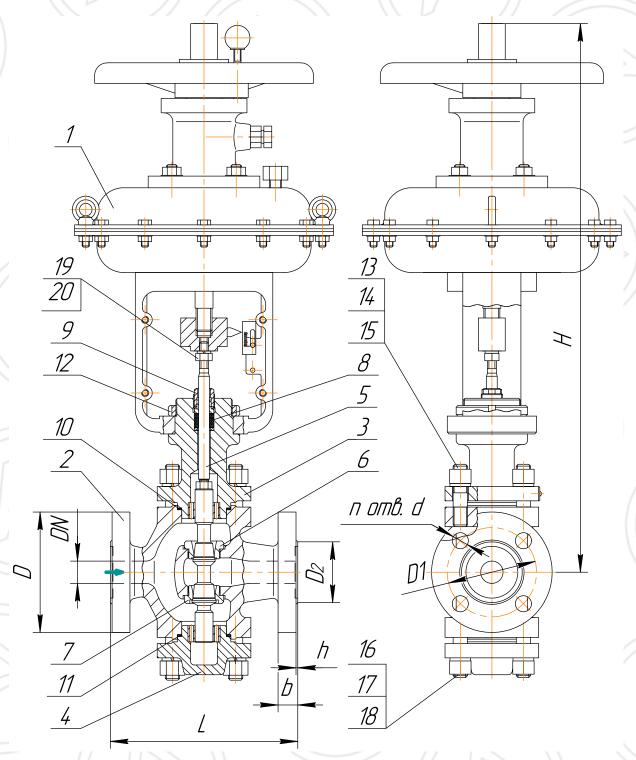


Рисунок 4. Клапан регулирующий типа НЗ с МИМ

1 — МИМ	8 – уплотнение сальниковое	15 – шайба
2 – корпус	9 – гайка сальника	16 – шпилька
3 – крышка	10 – прокладка	17 – гайка
4 – крышка глухая	11 – прокладка	18 – шайба
5 – плунжер	12 – гайка шлицевая	19 – гайка
6 – седло	13 – шпилька	20 - шайба
7 - селпо	14 - гайка	

- 1.6 Основные технические характеристики.
- 1.6.1 Основные технические характеристики клапанов приведены в таблице 6.

Основные технические данные и характеристики исполнительных механизмов приведены в руководстве по эксплуатации на ЭИМ, МИМ.

Таблица 6

Диаметр номинальный DN, мм	25	40	50	80	100	
Давление номинальное PN, Мпа (кгс/см²)	6,3 (63)					
Пропускная характеристика	Линейная (ЛКv), равнопроцентная (РКv)					
Условный ход плунжера, мм	16		25	40	50	
Условная пропускная способность Кvy, м³/ч	1,6 2,5 3,2 4,0 6,3 8 10 12,5 16	10 16 25 40	16 25 40 63	40 63 100 160	63 100 160 250	
Допустимый перепад давлений ΔР,	() /		11 -		ЭИМ 1,2 (12)	
не более, Мпа (кгс/см²)	2,5 (25)		1,6 (16)	МИМ 0,6 (6)		
Относительная протечка в затворе по ГОСТ 23866, % от Kvy		0,1 при ∆I	Рисп=0,4 Мі	та (4кгс/см²)		
	Комплектац	ия ЭИМ				
Тип ЭЙМ	ST 0, ST 0.1, ST 1-Ex		ST 0.1, ST 1-Ex		ST 1, ST 1-Ex	
Питание ЭИМ при частоте 50Гц, В	220, 24 (переменн	ого тока), 24 3×380	4 (постоянн	ого тока),	
Масса клапана, кг	23-36	33-46	38-51	62-71	134	
	Комплектац	ия МИМ	// //			
ТИП МИМ	МИМ 200	МИ	M 250	МИМ 320	МИМ 400	
Условное давление управляющего воздуха, кПа (кгс/см²)	0,25 (2,5)					
Перестановочный диапазон, кПа (кгс/см²)	80-240 (0,8-2,4)					
Масса клапана, кг	32	43	51	102	159	

- 1.6.2 Конкретные значения условной пропускной способности, исполнение и другие технические данные указаны в паспорте на изделие.
 - 1.7 Показатели надежности:

Средний срок службы – не менее 12 лет.

Средний ресурс – не менее 80 000 часов.

Наработка на отказ – не менее 10 000 часов.

1.7.1 Назначенные показатели, при достижении которых эксплуатация арматуры должна быть прекращена независимо от ее технического состояния:

Назначенный срок службы – 10 лет.

Назначенный ресурс – 70 000 часов.

Назначенный срок хранения – 10 лет.

Дальнейшая эксплуатация арматуры возможна только по решению комиссии, проведшей экспертное обследование в установленном нормативной документацией порядке.

- 1.7.2 Потенциально возможными отказами клапанов являются:
- потеря прочности корпусных деталей;
- потеря плотности материала корпусных деталей;
- потеря герметичности неподвижных прокладочных соединений деталей по отношению к внешней среде;
- потеря герметичности затвора;
- нарушение геометрической формы деталей, препятствующее нормальному функционированию (заклинивание подвижных частей, неустранимые повреждения рабочих поверхностей затвора, неустранимый дополнительной подтяжкой пропуск среды через сальник, срез резьбы);
- изменение размеров вследствие износа или коррозионного разрушения, препятствующее нормальному функционированию.
 - 1.7.3 Критериями предельного состояния клапанов являются:
- начальная стадия нарушения целостности корпусных деталей (потение, капельная течь);
- недопустимое изменение размеров элементов по условиям прочности и функционирования арматуры;
- потеря герметичности в разъемных соединениях, неустранимая их подтяжкой;
- возникновение трещин на основных деталях;
- увеличение номинального усилия при управлении арматурой до значений выше норм,
 указанных в эксплуатационной документации исполнительного механизма.

Предельные состояния клапана предшествует его отказам.

- 1.8 Маркировка и пломбирование
- 1.8.1 На лицевой стороне корпуса клапана выполнена маркировка литым способом: PN, DN, стрелка направления подачи рабочей среды, материал корпуса. На обратной стороне товарный знак предприятия-изготовителя.

На табличке, прикрепленной к крышке клапана, указаны: знак обращения продукции на рынке государств-членов Таможенного союза, наименование предприятия-изготовителя, таблица фигур, PN, DN, Kvy, заводской номер, дата изготовления.

1.8.2 Наружные поверхности клапана должны быть окрашены в соответствии с ГОСТ Р 52760 (см. таблицу 7) или в цвет по согласованию с Заказчиком.

Таблица 7

Покрытие	Материал корпусных деталей				
	C	лс	нж		
Эмаль НЦ-132 ГОСТ 66631	серая	синяя	голубая		

1.8.3 Разъемные соединения клапана должны иметь гарантийные пломбы.

Места гарантийного пломбирования, указанные в сборочных чертежах, должны быть отмечены пятном эмалью красной НЦ-132 ГОСТ 6631.

1.9 Консервация.

Клапан должен быть подвергнут консервации, обеспечивающей защиту от коррозии при транспортировании и хранении не менее 3 лет.

Вариант защиты — ВЗ-1 по ГОСТ 9.014. Консервация всех неокрашенных (обработанных и необработанных) поверхностей деталей должна производиться маслом консервационным К-17 ГОСТ 10877. Слой масла после нанесения должен быть сплошным, без воздушных пузырей и инородных включений. Допускается вариант защиты ВЗ-0 по ГОСТ 9.014.

1.10 Упаковка.

Упаковка должна обеспечивать защиту клапана от повреждений при транспортировании и хранении. Категория упаковки — КУ-2 по ГОСТ 23170. Вариант упаковки — ВУ-1 по ГОСТ 9.014. Клапан должен быть завернут в бумагу упаковочную, при этом внутренние полости должны быть предохранены от загрязнений заглушками, и упакован в ящик дощатый по ГОСТ 2991. Сопроводительная документация должна быть герметично упакована в пакет из полиэтиленовой пленки. Пакет с документацией закрепляется на самом изделии.

Маркировка транспортной тары – по ГОСТ 14192.

2 Использование по назначению

- 2.1 Подготовка к использованию.
- 2.1.1 Объем и последовательность внешнего осмотра изделия.

При получении груза с клапаном следует убедиться в полной сохранности тары. При наличии повреждений следует составить акт в установленном порядке и обратиться с рекламацией к транспортной организации.

Распаковать ящик, вынуть изделие. Проверить комплектность поставки в соответствии с паспортом.

Внешним осмотром проверить:

- отсутствие внешних механических повреждений клапана;
- соединение клапана с ЭИМ, МИМ;
- легкость перемещения штока ЭИМ, МИМ, переместив его на несколько миллиметров от первоначального положения с помощью ручного дублера (шток должен перемещаться плавно, без рывков).
 - 2.1.2 Меры безопасности при подготовке изделия к использованию:
- необходимо соблюдать общие правила техники безопасности при работе с трубопроводной арматурой;
- строповка клапана должна осуществляться за элементы корпуса клапана или за рым-болты МИМ. Строповка за ЭИМ, МИМ запрещается. Запрещается строповка за стойки МИМа;
- перед установкой клапана на трубопровод необходимо удалить консервационную смазку из внутренних полостей и с уплотнительных поверхностей, а затем промыть их уайт-спиритом.

2.2 Указания по монтажу:

- установочное положение клапана относительно трубопровода горизонтальное (исполнительным механизмом вверх), допустимое до 90° от вертикали с расположением стоек механизма в одной вертикальной плоскости. При наклонном расположении клапана под ЭИМ, МИМ следует установить опоры. Установка ниже горизонтальной линии запрещается;
- •устанавливать клапан на трубопровод следует так, чтобы направление движения среды совпадало с направлением стрелки на корпусе;
- рабочая среда не должна содержать механических примесей более 70мкм. Если размер частиц превышает 70мкм, то перед клапаном должен быть установлен фильтр;
- для обеспечения демонтажа клапана с трубопровода рекомендуется устанавливать запорную арматуру;
- перед пуском системы непосредственно после монтажа все клапаны должны быть открыты и должна быть произведена тщательная промывка и продувка системы;
- рекомендуется устанавливать клапаны на трубопроводах, имеющих прямые участки до и после клапана длиной не менее 10 условных проходов (DN);
- клапан не должен испытывать нагрузок от трубопровода (изгиб, сжатие, растяжение, кручение, перекосы, вибрация, несоосность патрубков, неравномерность затяжки крепежа). При необходимости должны быть предусмотрены опоры или компенсаторы, снижающие нагрузку от трубопровода;
- место установки клапана должно обеспечивать условия проведения осмотров и ремонтных работ. При расположении клапана на высоте более 1,6м следует предусматривать специальные площадки и лестницы для проведения осмотра при эксплуатации;
- При установке на открытом воздухе ЭИМ должны быть защищены от прямого воздействия атмосферных осадков;
- Заглушки необходимо снимать непосредственно перед установкой клапана на трубопровод.

3 Техническое обслуживание

3.1 Общие указания.

В процессе эксплуатации следует производить периодические осмотры в сроки, установленные графиком, в зависимости от режима работы системы, но не реже одного раза в 6 месяцев.

При осмотре необходимо проверить:

- общее состояние клапана;
- состояние крепежных соединений (при необходимости произвести подтяжку);
- герметичность прокладочных соединений и сальникового уплотнения.
 - 3.2 Меры безопасности.
 - 3.2.1 Требования безопасности при монтаже и эксплуатации по ГОСТ 53672.
- 3.2.2 Персонал, производящий работы с клапанами, а также консервацию и переконсервацию их, должен пройти инструктаж по технике безопасности, быть ознакомлен с инструкцией по эксплуатации и обслуживанию, иметь индивидуальные

средства защиты (спецодежду, очки, рукавицы и т.д.), соблюдать требования пожарной безопасности.

- 3.2.3 В ЭИМ должно быть предусмотрено устройство для подключения заземления в соответствии с «Правилами устройства установок» и ГОСТ 12.2.007.0.
- 3.2.4 Органы управления клапана должны исключать возможность их самопроизвольного включения.
- 3.2.5 Для обеспечения безопасной эксплуатации приводные устройства должны иметь конечные выключатели для сигнализации и отключения в конечных положениях.
- 3.2.6 ЭИМ, МИМ должны иметь ручной дублер управления, блокировку одновременной работы исполнительного механизма и ручного дублера.
- 3.2.7 Клеммники для подключения электрических цепей питания и сигнализации должны быть защищены от прикосновения обслуживающего персонала (закрыты крышкой).
 - 3.2.8 Для обеспечения безопасной работы категорически запрещается:
- производить работы по ремонту и демонтажу при наличии давления среды в полости клапана, не отключив питание ЭИМ или подачу воздуха в МИМ;
- производить подтяжку и замену сальникового уплотнения, подтяжку фланцевых соединений при наличии давления в системе;
- применять уплотнение большего или меньшего сечения;
- снимать клапан с трубопровода при наличии в нем рабочей среды и разбирать его, не обезвредив все поверхности, соприкасающиеся с агрессивной средой;
- использовать клапан в качестве опоры для трубопровода;
- класть на клапан и приводные устройства отдельные детали или монтажный инструмент при монтаже;
- применять удлинители к ключам крепежных деталей;
- эксплуатировать клапан без заземления ЭИМ.
 - 3.3 Неисправности и методы их устранения.

Перечень возможных неисправностей в процессе эксплуатации и рекомендации по их устранению приведены в таблице 8.

- 3.4 Порядок разборки и сборки.
- 3.4.1 При разборке и сборке клапана обязательно:
- выполнять требования безопасности, изложенные в п. 3.2 настоящего РЭ;
- предохранять уплотнительные, резьбовые и направляющие поверхности от повреждения.
 - 3.4.2 Полную разборку клапана производить в следующем порядке:
 - с помощью ЭИМ поз.1 отвести плунжер поз.5 в положение «открыто», отключить электропитание, отсоединить провода и контур заземления ЭИМ поз.1 / отсоединить подводящие воздуховоды к МИМ поз.1 (и позиционеру);
 - снять клапан с трубопровода;
 - ослабить гайку поз.19, отвернуть гайку шлицевую поз.12 и вывернуть плунжер поз.5 из присоединительной муфты ЭИМ / МИМ поз.1;
 - снять ЭИМ / МИМ поз.1 с клапана;
 - отвернуть гайки поз.13, снять шайбы поз.15, снять крышку поз.3;
 - извлечь прокладку поз.10 из корпуса поз.2;

Таблица 8

Наименование неисправностей, внешнее проявление и признаки	Вероятная причина	Метод устранения	
// 11	2	3	
1. Плунжер не совершает полный ход	Клапан разрегулирован по ходу	Произвести регулировку хода плунжера	
2. Перемещение штока затруднено при подаче командного и управляющего давления воздуха	1. Неисправен питающий воздухопровод 2. Загрязнились или заели (повредились) подвижные детали клапана	1. Проверить воздухопровод и устранить неисправности 2. Разобрать клапан, промыть, прочистить от грязи, зачистить возможные задиры. Смазать все подвижные детали, не соприкасающиеся с рабочей средой, смазкой ЦИАТИМ-221 ГОСТ 9433, собрать, настроить клапан 3. Произвести несколько циклов «открыто-закрыто» для проверки плавности хода	
3. пропуск среды через соединения корпус-крышка	Недостаточно уплотнена прокладка Повреждена прокладка	1. Уплотнить место соединения равномерной затяжкой гаек 2. Заменить прокладку	
4.Не герметичность сальника	1. Ослаблена затяжка гайки сальникового узла 2. Повреждены сальниковые кольца	1. уплотнить сальник дополнительной затяжкой гайки 2. Заменить сальниковые кольца	
5.Температура корпуса электродвигателя ЭИМ выше рабочей (65°C)	Повреждена электросхема, неправильное электроподключение Сильная затяжка сальникового узла	Проверить монтаж и электросхему Солабить гайку сальника с сохранением его герметичности в пределах рабочего режима	

- отвернуть гайку поз.19, снять шайбы поз.20, ослабить гайку сальника поз.9, извлечь плунжер поз.5 из крышки поз.3;
- вывернуть гайку сальника поз.9 из крышки поз.3, извлечь уплотнение сальниковое поз.8;
- отвернуть гайки поз.16, снять крышку глухую поз.4;
- извлечь прокладку поз.11 из корпуса поз.2;
- вывернуть шпильки поз.13 и поз.16;
- вывернуть седла поз.6 и поз.7 из корпуса поз.2 (при необходимости).
- 3.4.3 Сборку клапана производить в порядке, обратном разборке, при этом тщательно очистить все детали от загрязнения, промыть, трущиеся поверхности, несоприкасающиеся с рабочей средой, смазать консистентной смазкой.
- 3.4.4При сборке клапана необходимо произвести настройку присоединительного размера арматуры с исполнительным механизмом согласно инструкции по эксплуатации последнего.
 - 3.4.5 Собранный клапан подвергнуть следующим испытаниям:
- на герметичность прокладочных соединений и сальникового уплотнения относительно внешней среды;
- на герметичность затвора;
- на работоспособность.

- 3.5 Испытания.
- 3.5.1 Испытание на герметичность прокладочных соединений и сальникового уплотнения относительно внешней среды проводятся водой давлением PN при открытом затворе, заглушенном выходном патрубке и подаче среды во входной патрубок с выдерживанием при установившемся давлении в течение времени, необходимого осмотра, но не менее 1 мин для DN≤50мм, 2 мин для DN≥80мм. Контроль герметичности осуществлять по методике предприятия, производящего испытания.

Пропуск среды через места соединений не допускается.

3.5.2 Испытания на герметичность затвора следует производить подачей воды давлением ΔРисп во входной патрубок, при этом выходной патрубок должен быть сообщен с атмосферой.

Затвор должен быть закрыт с помощью ЭИМ, МИМ, позиционер отключен (при наличии).

При испытании клапана НО в МИМ подавать воздух давлением 0,1Мпа, допускается до 0,12Мпа.

Испытание клапана НЗ производить без подачи давления в МИМ.

Продолжительность выдержки при установившемся давлении – не менее 3 мин.

Пропуск воды в затворе не должен превышать значений, указанных в таблице 9.

Таблица 9

Kvy, м³/час	Qзат, не более		V. n 3/	Qзат, не более	
	дм ³ /мин	мл/мин	Kvy, м³/час	дм3/мин	мл/мин
1,6	0,053	53	12,5	0,42	420
2,5	0,084	84	16	0,528	528
3,2	0,107	107	25	0,84	840
4,0	0,132	132	40	1,3	1300
6,3	0,198	198	63	2,0	2000
8,0	0,269	269	100	3,3	3300
10	0,33	330	160	5,3	5300

3.5.3 Испытание на работоспособность следует производить путем пятикратного срабатывания клапана с помощью ЭИМ, МИМ на величину полного хода без подачи среды в клапан. Дополнительно необходимо проверить работу ручного дублера.

Клапан считается работоспособным, если все подвижные детали перемещаются плавно, без заеданий и рывков, а дополнительные блоки выполняют свои функции.

3.5.4 Клапаны, предназначенные для газообразных сред, дополнительно испытываются на герметичность прокладочных соединений и сальникового уплотнения воздухом давлением P=0,6Mпа (6кгс/см²) пузырьковым методом способом обмыливания.

Клапан считают герметичным относительно внешней среды, если при установившемся давлении в течение не менее 3 мин не обнаружено появления мыльных пузырьков.

4 Хранение

4.1 Клапаны следует хранить в упаковке предприятия-изготовителя в закрытых складских помещениях при температуре от 5 до 50°C и относительной влажности до 80%,

обеспечивающих сохранность упаковки и исправность клапанов в течение гарантийного срока.

4.2 Клапаны, находящиеся на длительном хранении, подвергаются периодическому осмотру не реже одного раза в год. При нарушении консервации произвести консервацию вновь. Консервационную смазку наносить на обезжиренную чистую и сухую поверхность деталей. Обезжиривание производить чистой ветошью, смоченной в бензине.

5 Транспортирование

5.1 Условия транспортирования должны обеспечивать сохранность клапанов и их упаковки.

Клапаны перевозят транспортом всех видов в соответствии с правилами перевозки грузов, действующими на транспорте данного вида.

- 5.2 Условия транспортирования и хранения по группе 4 (Ж2) ГОСТ 15150, в части воздействия механических факторов легкие (Л) и средние (С) по ГОСТ 23170.
- 5.3 При поставке клапанов с ответными фланцами при транспортировании допускается снимать последние, укладывая их вместе с крепежными деталями в одну тару с клапаном.

6 Утилизация

Изделие не представляет опасности для жизни, здоровья людей и окружающей среды и подлежит утилизации после окончания срока службы по технологии, принятой на предприятии, эксплуатирующем клапан.

ООО «Арма-Пром» | 309540 Россия, Белгородская область, г. Старый Оскол станция Котёл, Промузел, площадка "Монтажная", проезд Ш-6, стр. 19.

Телефон: +7 (4725) 469-370, +7 (4725) 414-034 (многоканальный) E-mail: zavod@saz-avangard.ru